A unified generalization of some quadrature rules and error bounds
نویسندگان
چکیده
WENJUN LIU, YONG JIANG, AND ADNAN TUNA Abstract. By introducing a parameter, we give a unified generalization of some quadrature rules, which not only unify the recent results about error bounds for generalized mid-point, trapezoid and Simpson’s rules, but also give some new error bounds for other quadrature rules as special cases. Especially, two sharp error inequalities are derived when n is an odd and an even integer, respectively.
منابع مشابه
Weighted quadrature rules with binomial nodes
In this paper, a new class of a weighted quadrature rule is represented as -------------------------------------------- where is a weight function, are interpolation nodes, are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as that and we obtain the explicit expressions of the coefficients using the q-...
متن کاملInequalities between the Quadrature Operators and Error Bounds of Quadrature Rules
The order structure of the set of six operators connected with quadrature rules is established in the class of 3–convex functions. Convex combinations of these operators are studied and their error bounds for four times differentiable functions are given. In some cases they are obtained for less regular functions as in the classical results. Quadrature Rules, Inequalities and Error Bounds Szymo...
متن کاملSome Generalized Error Inequalities and Applications
We present a family of four-point quadrature rule, a generalization of Gauss-two point, Simpson’s 3/8, and Lobatto four-point quadrature rule for twice-differentiable mapping. Moreover, it is shown that the corresponding optimal quadrature formula presents better estimate in the context of four-point quadrature formulae of closed type. A unified treatment of error inequalities for different cla...
متن کاملOn the Equivalence between Quadrature Rules and Random Features
We show that kernel-based quadrature rules for computing integrals are a special case of random feature expansions for positive definite kernels for a particular decomposition that always exists for such kernels. We provide a theoretical analysis of the number of required samples for a given approximation error, leading to both upper and lower bounds that are based solely on the eigenvalues of ...
متن کاملOn the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
We show that kernel-based quadrature rules for computing integrals can be seen as a special case of random feature expansions for positive definite kernels, for a particular decomposition that always exists for such kernels. We provide a theoretical analysis of the number of required samples for a given approximation error, leading to both upper and lower bounds that are based solely on the eig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 219 شماره
صفحات -
تاریخ انتشار 2013